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Motivated by the major role funneling dynamics plays in light-harvesting processes, we built some laser control strategies
inspired from basic mechanisms such as interference and kicks, and applied them to the case of pyrazine. We are studying
the internal conversion between the two excited states, the highest and directly reachable from the initial ground state
being considered as a donor and the lowest as an acceptor. The ultimate control objective is the maximum population
deposit in the otherwise dark acceptor from a two-step process: radiative excitation of the donor, followed by a
conical-intersection-mediated funneling towards the acceptor. The overall idea is to first obtain the control field param-
eters (individual pulses leading frequency and intensity, duration, and inter-pulse time delay) for tractable reduced dimen-
sional models basically describing the conical intersection branching space. Once these parameters are optimized, they are
fixed and used in full-dimensional dynamics describing the electronic population transfer. In the case of pyrazine, the
reduced model is four-dimensional, whereas the full dynamics involves 24 vibrational modes. Within experimentally achiev-
able electromagnetic field requirements, we obtain a robust control with about 60% of the ground state population depos-
ited in the acceptor state, while about 16% remains in the donor. Moreover, we anticipate a possible transposition to the
control of even larger molecular systems, for which only a small number of normal modes are active, among all the others
acting as spectators in the dynamics.
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1. Introduction

Funneling dynamics is a key mechanism in the framework of
artificial light-harvesting processes, biological antennas, or
organic photovoltaic devices[1–3]. Transfer from an initial
donor to a target acceptor proceeds through an excited state gra-
dient, leading to a final localization from which the photonic
energy may be captured. In complex molecular systems, such
energy transport mechanisms are driven by ultra-fast non-
adiabatic transitions through conical intersections (CIs)[4–9].
Investigation of the coherent preparation of the donor state from
the initial ground state and the control of the subsequent
dynamics using intense, ultra-short laser pulses are major issues
for modifying the energy transport mechanisms[10–12]. In this
context, we have recently studied a rather complex molecular
system, namely, polyphenylene ethynylene dendrimer, with a
control objective aiming at the coherent preparation of two
donor states involved in the dynamics, or their symmetric versus
asymmetric superposition[13]. In these systems, the acceptor
state is radiatively coupled to the ground state. It is only by dis-
carding this direct excitation that we could build control

strategies to increase the coherence (asymmetry) lifetime to pop-
ulate the acceptor through the vibrational baths of the donors.
In the present work, we address the coherent control of the

pyrazine (C4H4N2) photophysics and more precisely its S2 →
S1 internal conversion leading to challenging issues, both with
respect to its ultra-fast non-adiabatic CI transfer (internal con-
version time scale of 20 fs[14–18]) and to its 24-dimensional (24D)
vibrational excitation dynamics. Some previous works in the lit-
erature are also concerned by the coherent control of population
transfer from S0 to S2 and S1 electronic states, putting the
emphasis on a significant delay of the internal conversion (or,
in general, radiationless transition), which is considered as an
undesired phenomenon[19–21]. This is in relation with the fact
that a successfully populated excited state (S2) would be readily
available for applications (such as the observation of desired
photoproducts, mode selective chemistry, light-triggered
molecular rotors, separation of racemic mixtures) for only a
brief period of time. In this respect, Refs. [20,21] focus specifi-
cally on an optimal control scheme to suppress radiationless
transitions on nanosecond (ns) time scales after the external
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control is over. As for Ref. [19], the authors proceed to a detailed
study of the S0 → S2 → S1 process, putting the emphasis on
maximal S2 population during the control scheme (about
50 fs duration). Still other works[22,23] refer to more general
schemes by using overlapping resonances. The main computa-
tional limitation is identified as the reduced number of vibra-
tional modes, usually four rather than 24. However, within
some approximations, model extensions to 24 dimensions have
been achieved, making use of a so-called QP (Q denotes the
small subspace of interest and P the rest) partitioning[24].
Motivated by light-harvesting systems, we pursue an opposite
goal. Our purpose is to maximize the population of the energeti-
cally lower and thusmore stable excited state S1. The basic idea is
to deposit the exciton energy from the bright donor state S2 to
the dark acceptor state S1, through a funneling mechanism trig-
gered by a CI and non-adiabatic internal coupling, taking advan-
tage of a decreasing electronic gradient from S2 to S1.
Control objectives being opposite, the strategies we are

developing also differ completely from the ones referred to in
previous works. More precisely, when maximizing the S2 pop-
ulation, the emphasis is put on stable, electronically localized
eigenstates among the very dense manifold of vibronically
coupled levels. References [20,21] are concerned by an optically
coherent superposition of a specific eigenstate localized in the S2
potential well. Reference [19] also deals with high-lying S2 vibra-
tional states with significantly slower decay rates into S1. A com-
plete study of excitation frequencies is undertaken to resonantly
reach the superposition of such excited vibrational states, using
rather long duration pulses (180 fs for Refs. [20,21] and 40 to
100 fs for Ref. [19]). Some other works deal either with the
dynamic Stark effect used as a basic mechanism to shift the
CI away from the Franck–Condon (FC) region[25–27], or with
optimal control theory[28], but they are limited to three or four
modes of vibronic couplings. We are adopting different control
strategies based on two mechanisms: either interference or sud-
den excitation kicks, as extended to high-dimensional complex
molecular systems. This is conducted by using ultra-short
broad-band pulses, without a specific resonant excitation fre-
quency. We note that such strategies remain in the spirit of what
has been suggested in the preliminary work of Ref. [29]. Our
control schemes are built so as to decrease the ground state
S0 population and simultaneously reach the optimal contrast
favoring S1 population as compared to the one of S2. As a sig-
nature of a stable deposit of electronic energy, we are interested
in the post-pulse S1 population, taking into account the dephas-
ing processes of the full 24-mode dynamical description of pyr-
azine. On the experimental side, it is worth mentioning that
several works are addressing the control of the internal conver-
sion to the energy transfer ratio, using in particular, open learn-
ing loop setups and evolutionary algorithms[30–33]. In particular,
the multi-pulse excitation (a degenerate four-wave-mixing
sequence) has its counterpart in the present work, in terms of
ultra-short pulse trains to propel the wave packet towards the CI.
Themanuscript is organized as follows. Section 2 is devoted to

the Frenkel vibronic Hamiltonian involving the 24-mode
model of pyrazine, with all relevant parameters taken from

Ref. [34]. The methodology adopted to treat this model is the
multi-configurational time-dependent Hartree (MCTDH)[34–39],
which is shortly reviewed with respect to its numerical conver-
gence criteria in the CI branching space. The post-pulse field-
free dynamics and its recursive patterns in terms of wavepacket
vibrational periods on both S2 and S1 potential energy curves are
analyzed. A detailed interpretation is provided when going from
2D to four-dimensional (4D) and 24D models. Control strate-
gies are presented in Section 3, putting the emphasis on control
observations and parameters on the one hand and interference
and kick mechanisms from weak to strong field regimes on the
other hand. Results are presented in Section 4 for both the
mechanisms with their interpretation. Conclusions and some
perspectives are given in Section 5.

2. Methodology: Model Hamiltonian and Numerical
Techniques

As in many previous works, we are considering three electronic
states of pyrazine, namely, the ground state S0�1Ag�, together
with the two lowest excited electronic states, S1�1B3u� and
S2�1B2u�. These states are well-separated from others, close in
energy, and vibronically coupled to each other[15]. Figure 1 dis-
plays a schematic view of the corresponding states and their
couplings.
Following the usual model of displaced harmonic oscillators

in open quantum systems, we work with a linear vibronic
Hamiltonian expressed in a diabatic representation. In this sec-
tion, we examine the field-free vibronic Frenkel Hamiltonian,
the MCTDH method retained for solving it, and the generic
field-free dynamics after launching part of the ground state
wavepacket on the excited states. That is more precisely con-
ducted with successive 2D, 4D, and 24D models for a clear
understanding of the role of dimensionality.

Fig. 1. Schematic view of the three-state model used for pyrazine. The ground
state S0 is indicated in thick solid blue line. The bright donor state S2 is a thick
solid black line, and the dark acceptor state S2 is a thick solid red line. The thin
horizontal lines are for the corresponding vibrational states. The interstate
coupling W12 in the dotted blue line and the transition dipole moments μ01
and μ02 are also indicated.
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2.1. Vibronic Hamiltonian

We briefly recall the generic field-free Frenkel Hamiltonian,
which reads[40]

HS�Q� =
X
n

jniHnn�Q�hnj �
X
n≠m

jniHnm�Q�hmj, (1)

where n and m = 0, 1, 2 denote the electronic states and Q col-
lectively the nuclear coordinates. Using the linear vibronic cou-
pling of Ref. [34] in mass weighted coordinates, we have

Hnn�Q� = ϵ̃�n� �
XNα

α

�P2
α � ω�n�

α
2�Qα − d�n�α �2�, (2)

and

Hnm�Q� =
XNα

α

λ�nm�
α Qα, (3)

where Qα and Pα = −iℏ ∂

∂Qα
are the coordinate and momentum

associated with the mode α. There are Nα such modes in the

electronic state n with frequency ω�n�
α and displacement d�n�α .

Reorganizing Eq. (2), one gets

Hnn�Q� = ϵ�n� �
XNα

α

�P2
α � ω�n�

α
2Q2

α� �
XNα

α

κ�n�α Qα, (4)

where the gradient at the reference point (Qα = 0) is given by

κ�n�α = −2ω�n�
α

2d�n�α , and the gradient of the interstate coupling

is noted as λ�nm�
α =W12. Finally, the renormalized site energy

is ϵ�n� = ϵ̃�n� � ω�n�
α

2d�n�α
2. Table 1 of Ref. [34] collects all the

parameters that are relevant for the system Hamiltonian given
by Eq. (1). We have to position S2 with respect to S0, and, for
this, we take the value 4.84 eV from Refs. [18,41].
It is to be noted that the two normal modes that span the CI

branching space, using the symmetry group notations, are Q6a

for state S1 and Q10a for state S2
[40]. As mentioned before, the

three models will be referred to as 2D (Nα = 2) involving Q6a,
Q10a, 4D (Nα = 4) when enlarging the branching space to Q9a

andQ1, and the full 24D (Nα = 24) description involving all nor-
mal modes.

2.2. MCTDH survey

The MCTDH approach for multi-electronic states and multi-
mode nuclear dynamics has been presented in detail in the
literature. For pyrazine, with its three electronic states in consid-
eration, the multi-state vibrational wave function is taken as a
three-dimensional column vector �Ψ1,Ψ2,Ψ3�T , of single-state
nuclear wave functions Ψn�n = 1, 2, 3�, T being the transpose.
The total electro-nuclear eigenvector is then written as

jΨTot�Q, t�i =
X3
n=1

Ψn�Q, t�jni: (5)

n labels the electronic states, and the unknown nuclear wave
functions are solutions of the following close-coupled equations:

−iℏ
∂

∂t
Ψn�Q, t� = HnnΨn�Q, t� �

X
m≠n

HnmΨm�Q, t�: (6)

A standard multi-configuration approach consists of expand-
ing these functions on a time-independent basis set ΦJ ,n, with
time-dependent coefficients AJ ,n, as

Ψn�Q, t� =
XNJ

J

AJ ,n�t�ΦJ ,n�Q�: (7)

The major improvement brought byMCTDH is that not only
the coefficients but also the basis functions are taken as time-
dependent. The challenge is that, by adapting the basis set
functions to the temporal evolution, one must reduce the total
number of these functions (i.e., NJ) for a given convergence cri-
terion. To proceed along this line, the now time-dependent basis
set functions Φ̃J ,n�Q, t� are given as a tensorial product of time-

dependent single-particle functions (SPFs) φ�α�
jα
�Qα, t� describ-

ing a given nuclear degree of freedom α. The complete expan-
sion reads as

Ψn�Q, t� =
Xn1
j1=1

: : :
Xnf
jf=1

Aj1; : : : jf �t�
Yf
α=1

φ�α�
jα
�Qα, t�, (8)

where f is the number of nuclear degrees of freedom. The index
jα stands for one of the nα possible single-particle functions for
the αth nuclear degree of freedom. The number of configura-
tions is thus given by the product n1 : : : nf . The single-particle
functions are ultimately expressed in time-independent, so-

called primitive basis set functions χ�α�ik
�Qk� as

φ�α�
jα
�Qα, t� =

XMα

iα

c�α, jα�iα
�t�χ�α�iα

�Qα�: (9)

Interestingly enough, there is no prescription for SPFs to
depend on a single coordinate, and they may depend on several
coordinates. To further reduce the memory and the numerical
effort, several physical coordinates can be regrouped into a
so-called combined mode[34]:

Q̃κ ≡ �Qκ;1,Qκ;2, : : : ,Qκ,d�, (10)

φ�κ�
j �Q̃κ , t� = φ�κ�

j �Qκ;1,Qκ;2, : : : ,Qκ,d , t�, (11)

where d is the number of nuclear degrees of freedom in the com-
bined mode Q̃κ . The MCTDHwavefunction is now expanded as
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Ψ�Q̃1, : : : , Q̃p, t� =
Xn1 · · · np
j1 · · · jp

Aj1 · · · jp�t�
Yp
κ=1

φ�κ�
j �Q̃κ , t�, (12)

where p is the number of combined modes, and the SPFs them-
selves are expanded as

φ�κ�
j �Q̃κ , t� =

XMκ1 · · ·Mκd

i1 · · · id

C�κ, j�
i1 · · · id

�t�χ�κ;1��Qκ;1� · · · χ�κ,d��Qκ,d�:

(13)

Here, we use p = 8 combined modes Q̃j (j = 1, : : : 8). More
precisely, Q̃1 results from a combination of Q6a and Q10a. For
the others, the combination scheme is indicated in parenthesis,
i.e., Q̃2�1, 9a, 8a�, Q̃3�2, 4, 5�, Q̃4�6b, 3, 8b�, Q̃5�7b, 16a, 17a�,
Q̃6�12, 18a�, Q̃7�19a, 13, 18b, 14�, and Q̃8�19 b, 20b, 16b, 11�.
As already said, we use the normal coordinates of pyrazine in

its electronic ground state for the dynamics (f = 24). For the
primitive basis set [χ�κ,j��Qκ,j� correspond to the primitive basis
functions for the nuclear coordinateQκ,j andMκj their number],
we have used 22 harmonic oscillator discrete variable represen-
tation (DVR) functions for the nuclear (normal) coordinatesQ6a

andQ10a, whereas only 12 and 11 such functions are retained for
the normal coordinates Q9a and Q1 normal modes, respectively.
All other nuclear coordinates, not playing a crucial part in the
dynamics, are merely described by four DVR functions.
Numerical convergence is obtained by a much smaller basis
set (n1 · · · n8) of single-particle functions, which are no more

one-dimensional (φ�κ�
j �Q̃κ , t�), as given in Table 1.

The equations of motion for the coefficientsA of Eq. (8) result
from the time-dependent evolution equation involving the total
Hamiltonian, i.e., the one of the system, together with the mol-
ecule field coupling. The close-coupled system of differential
equations [Eq. (6)] is solved by projecting on the basis function
of the combined modes. The initial condition, at time t = 0,
being taken as one for the vibrationless ground state n = 1,
and zero for all other states, the nuclear wave functions are built
following Eq. (8). Finally, the time-dependent population in
each electronic state is given as

Pn�t� =
Z

jΨn�Q, t�j2dQ: (14)

2.3. Field-free dynamics

In order to have a typical generic overview of the S2 → S1 pop-
ulation transfer, we now proceed to three dynamical calculations
extending over a period of 500 fs.More precisely, we successively
analyze 2D and 4D approximate models and relate them with
the full 24D model. The minimal 2D model merely involves
the two normal modes α = 6a and α = 10a building up the CI
branching space. The population transfer dynamics are induced
by some Franck–Condon vertical launching of the initial vibra-
tionless (vα = 0 for all α) S0 wavepacket on the excited states. To
fix the ideas, this is practically done referring to a low intensity
(5 × 1012 W=cm2), short duration (14 fs), resonant laser pulse
(carrier-wave frequency of 4.8 eV), which is symbolized by
the vertical blue arrow of Fig. 2 positioned at time t = 0. Note
that several time-resolved photoelectron spectroscopy experi-
mental studies have been reported using pump pulses around
4.7 eV: they do not report any dipole-allowed resonant (1 +
1) transition to a higher lying electronic state but a slow decay
(of around 20 ps) to the electronic ground state; see the intro-
duction of Ref. [42].
It is worthwhile noting that the precise parameters of this

excitation are an illustrative example of the kind of sudden exci-
tation we refer to initiate the transfer dynamics. During the 14 fs
S0 → S2 resonant excitation process, it is basically the S2 state
that is populated up to P2 = 0.37, whereas P1 does not exceed
0.03. The short pulse here is just to initiate a typical population
transfer from the initial ground S0 to the bright donor state S2,
without any control purpose. Actually, what we call free-field
dynamics is to be understood as the wave packet dynamics fol-
lowing the switch-off of this pulse.

Table 1. Number of Single-Particle Functions (n1 · · · n8) Used for the Eight
Combined Modesa.

n Q̃1 Q̃2 Q̃3 Q̃4 Q̃5 Q̃6 Q̃7 Q̃8

1 10 10 4 4 4 4 4 4

2 28 28 4 4 4 4 4 4

3 28 28 4 4 4 4 4 4

aThe size of the DVR for each mode is given in the text.

Fig. 2. Excited states populations as a function of propagation time in a min-
imal 2D model involving the CI branching space. P2 and P1 are, respectively,
indicated by thin black and thick red solid lines. The blue vertical arrow at
t = 0 symbolizes the vertical launching of the v = 0 wavepacket from the initial
state S0. T1 and T2 are, respectively, the vibrational periods of the excited
states S1 and S2. W12

−1 is a notation for the CI characteristic transfer time.
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The post-pulse field-free dynamics starts with this configura-
tion and proceeds towards the descending energy gradient from
S2 to S1 electronic potential energy surfaces coupled byW12. In
particular, due to the CI, an important amount of population is
transferred to S1. After a delay corresponding to the S1 vibra-
tional period (T1 = 56 fs with the parameters of our model),
the wavepacket reflected on the outer right turning point returns
back to the CI region with a partial back transfer to S2 and then
evolves with another oscillation with the vibrational period
(T2 = 44 fs) of the state S2. The combination of these two oscil-
lation modes in the vibrational baths of S1 and S2 gives rise to a
recurrent pattern in the population dynamics that is then peri-
odically repeated. Figure 2 provides a complete illustration of
such recursive patterns. Calculations based on longer propaga-
tion times show that the revival structures last for more than
1 ps. They are progressively attenuated, and their periodicity
is slightly altered due to wavepacket broadening. We now pro-
ceed by including higher degrees of freedom through additional
normal modes. Figure 3 displays such calculations over 500 fs of
propagation time, with the same excitation initiating the popu-
lation transfer from S0. It is to be noted that the additional
degrees of freedom in multi-dimensional calculations dramati-
cally increase the density of vibrational states. As a consequence,
the specificity of the T1 and T2 vibrational periods of the
α = 6a and α = 10a normal modes, building up the 2D model,
is partially lost. The wavepacket is spreading over all the
additional modes through all the vibrational states that form a

quasi-continuum. Typically after 250 fs, the revival structures
are completely suppressed. The P1 and P2 populations are mod-
erately oscillating and progressively stabilizing in time.

3. Coherent Control

The pyrazine molecule is studied in planar geometry and
assumed to be oriented in a plane Oyz orthogonal to the propa-
gation directionOx of the electromagnetic field E�t�. The laser is
supposed to be linearly polarized along the Oz axis. The time-
dependent total Hamiltonian is written in the length gauge
and within the dipole approximation as

H�Q; t� =HS�Q� � V�Q; t�, (15)

HS being the molecular Hamiltonian taken from Eq. (1) and V
the radiative coupling:

V�Q; t� = −μ�Q�E�t�: (16)

The transition dipole matrix elements between the ground S0
and excited S1, S2 states are, respectively, noted as μ01 and μ02.
Their explicit spatial expansions in terms of the normal mode
coordinates are given by[26]

μ01�Q� = ξ�01�10a Q10a, (17)

μ02�Q� = μ02�0� �
X
α≠10a

ξ�02�α Qα �
1
2
ρ�02�10a Q

2
10a: (18)

It is worthwhile noting that for symmetry arguments, μ02 is
much larger than μ01 due to its permanent dipole component
μ02�0�. Numerical values we are using are extracted from
Ref. [27]. It is also to be noted that we are working in such field
conditions where referring to the polarizability is not necessary,
as opposed to Ref. [27], concerned by very strong intensities and
excitation conditions far from resonance. We will now examine
the relevance of some control observables, together with two
strategies to reach them in an optimal way, by exploiting two
different mechanisms; namely, interference and kicks.

3.1. Control observable

The primary objective of this study is to optimize the population
P1 of the acceptor state S1. But for pyrazine, the acceptor state S1
is a quasi-dark one, as is clear from Eq. (17), practically without
the possibility of a direct radiative excitation from the ground
state. The population transfer process first proceeds with the
radiative excitation of the ground S0 state to the bright excited
S2, which then acts as a donor. The second step is monitored by
the interstate couplingW12, leading to a CI-induced strong non-
adiabatic transfer from S2 to S1. A rather intuitive control objec-
tive could be taken as the maximization of the ratio
r�t� = P1�t�=P2�t�. But, this goes with the difficulty of getting
very high ratio r, between actually very small excited states pop-
ulations, that is without any practical interest. To properly take

Fig. 3. Excited states populations as a function of propagation time in 4D
(upper panel) and full 24D models (lower panel). Same notations as for Fig. 2.
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into account the two steps, excitation and funneling, we built a
population contrast type control observable combining two
requirements: (i) maximization of the excited states populations,
which actually amounts to theminimization of the residual pop-
ulation P0 of the ground state S0 and (ii), among the two excited
states, bring the maximum of population on the dark acceptor
state S1 or, in other words, increase the contrast between excited
states population. Such a time-dependent contrast is given by

p̃�t� = P1�t� − P2�t�
P0�t�

: (19)

It is worth noting that, in terms of r, Eq. (19) can be written as

p̃�t� = r�t� − 1
1=P2�t� − �r�t� � 1� : (20)

Maximizing p̃ requires simultaneously maximizing the
numerator, that is r > 1, and minimizing the (always positive)
denominator, which is achieved with P2�t� < 1=�1� r�t��.
Finally, combining these two requirements, in particular limit-
ing the P2 increase, our control objective goes much beyond the
passive observation of the acceptor state population P1 increase
(i.e., increasing the donor state population P2 and waiting for its
CI-mediated transfer towards the acceptor).
On numerical grounds, in weak fields, P0 would be considered

not less than 0.5, meaning that no more than half of the initial
population is assumed to be transferred to the excited states. As a
consequence, even in the case of the best contrast that could
ideally be reached between the donor and acceptor states (that
is P1 = 0.5 and P2 = 0), themaximum possible value for p̃ should
not exceed one. In other words, it is only in the strong field
regime that we could expect a contrast p̃ > 1.
Finally, instead of the time-dependent contrast given by

Eq. (19), we choose a scalar control observable by taking time
averages of p̃�t�:

p =
1

tmax − tmin

Z
tmax

tmin

p̃�t�dt: (21)

This involves the definition of time windows over which the
average is performed. A local contrast can be defined over a time
window displaying the maximum of contrast, which happens
during the first vibrational pattern, lasting over 45 fs, as
illustrated in Fig. 2, and leading to the choice �tmin, tmax�=
�45 fs, 90 fs�. Although, during this 45 fs time window, some
experimental observables are reachable, more interestingly, an
asymptotic contrast is adopted in the following defining a
semi-finite time interval above 300 fs. Incidentally, it is to be
noticed that 300 fs corresponds to typical electronic coherence
times for such molecular systems [the dissipation comes from
the intramolecular vibrational redistribution (IVR)] and an
upper limit of 500 fs is taken as our final propagation time, lead-
ing to �tmin, tmax� = �300 fs, 500 fs�.

3.2. Control fields

In the following, we refer to two laser control strategies based on
two mechanisms, namely, interference and kicks. In both cases,
the control field is made up of a train of N time-delayed indi-
vidual pulses. Two such pulses are illustrated in Fig. 4. The gen-
eral expression for the field involved in Eq. (16) is given by

E�t� =
XN
i=1

��
I

p
Ei�t� sin�ωt�, (22)

where I is the laser leading intensity and ω its frequency. Ei�t� is
the pulse envelope, taken as

Ei�t� = sin2
�
π

T
�t − ti�

�
H�t − ti�H�ti � T − τ�, (23)

where T is the pulse duration.H is the Heaviside function, being
zero or one depending on whether its argument is negative or
positive. The time intervals ti are given as ti = �i − 1�τ, where
τ is the time delay between the two successive pulses.
Moreover, we wish to disentangle the roles of strong field and
interference effects. When referring to our control observable,
a relevant comparison would require excitation conditions
where the same total electromagnetic energy is deposited in
the system by the pulse train over its full duration and given by

A =
Z

∞

0
E2�t�dt: (24)

More precisely, we compare pulse trains with the same total
energy, namely, the one provided by the single pulse. To fix the
ideas, for two identical pulses E1 = E2 = ϵ, A can be written as

A = a
Z

∞

0
ϵ2�t�dt: (25)

Referring to Fig. 4, three cases are examined: (i) τ ≥ T , no
overlapping pulses, resulting in a = 2; (ii) τ = 0, full overlapping,
with a = 4; and (iii) 0 < τ < T , partial overlapping, leading to a
delay-dependent a (2 < a < 4), to be calculated according to

Fig. 4. Sine-square laser electric field envelopes for two identical pulses as a
function of time. The illustrated pulse duration corresponds to T = 14 fs,
whereas the inter-pulse time delay is τ = 6 fs.
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Eqs. (24) and (25). Our control fields amplitudes are normalized
so as to provide the same total electromagnetic energy. This is
practically done by dividing the nominal intensities I by a, or
equivalently, the electric field amplitudes by

���
a

p
.

We also wish to emphasize that when developing these strat-
egies, we always have in mind the experimental feasibility with
respect to pulse duration, intensities, and maximum number of
pulses in the train. For the interference scenario, the laser leading
frequency ω is taken to be approximately resonant with the
excited states vibrational levels at the Franck–Condon vertical
region of the ground state. The optimal value that is adopted
isω = 4.77 eV, i.e., a wavelength of λ = 260 nm in the UV region.
The pulse duration T is calculated such that the corresponding
energy band broadening covers enough vibrational levels taking
part in the funneling process. For the kicks scenario, the reso-
nance condition is no more a relevant requirement, since the
ultra-short pulses involved in this strategy would lead to excita-
tion with even broader energy bands. All ultra-short pulses are
taken as identical and typical values, which are retained
(T = 14 fs or even T = 10 fs) and correspond to band broaden-
ing ranging from 2382 cm−1 up to 3335 cm−1. Following a
few attempts to roughly optimize the frequency ω and the
duration T , we are finally left with two main control parameters,
namely, the field intensity I and the time delay τ.

3.3. Coherent control strategies

The first strategy we are referring to relies on vibrational wave
packets interference as a basic mechanism, envisioned either in a
pump-probe or a pump-pump process. More precisely, as illus-
trated in Fig. 1, the pump-probe process involves two routes to
reach S1, starting from the ground state S0. Route 1 (pump pulse)
proceeds through the intermediate state S2 with the lowest-order
transition amplitude given by[43]

T1 = V � VG0V, �26�

where G0 is the lowest-order Green’s function of the system
Hamiltonian involving the diabatic electronic states, and V
stands for interstate (W12) and radiative (μ20E1) couplings.
More precisely, for Route 1, in the absence of direct radiative
coupling S0 → S1, one has

T1 = hS1jW12
1

ES0 − ES2 � ℏω
μ20E1jS0i, (27)

where ESi are the energies of the corresponding electronic states,
and E1 is the pump pulse electric field. Route 2 (probe pulse) is
the direct transition S0 → S1, with a transition amplitude:

T2 = hS1jμ01E2jS0i, (28)

with E2 the probe pulse electric field. When applying the two
pulses with a time delay τ, the pump-probe strategy finally
results in an S1 population given by

P1 = jT1 � T2e−iEτ=ℏj2, (29)

with E = ES0 � ℏω. Due to very low transition dipole μ01 as
compared to μ02, the transition amplitude T 2 is actually negli-
gible unless very strong field amplitudes E2 are used with pos-
sible ionization or dissociation damage on the molecule. This is
why we would rather focus on a pump-pump process retaining
only Route 1 and resulting in

P1 = jT 1 � T 1e−iEτ=ℏj2: (30)

Finally, the interference scheme we are considering through
Eq. (30) is between the transition amplitudes T 1, with a con-
trolled delay τ. Such interference mechanisms have already been
recently exploited in the control of rotational anisotropy[44]. A
physical understanding of the mechanism can be obtained by
considering the vibrational wavepacket back and forth oscilla-
tions in the excited states potentials. Following a first laser pulse
leading to a vertical Franck–Condon launching from S0 to S2, the
vibrational wavepacket oscillates during its early dynamics t <
70 fs in the excited S2 and S1 states harmonic potentials. A sec-
ond pulse is then applied with a controlled delay τ launching a
second wavepacket from the ground state S0, which can interfere
with the first one, as they may overlap if the delay is adequately
chosen. A constructive interference would produce an ampli-
tude enhancement close to the CI, and thus an efficient popu-
lation transfer from S2 to S1. Later on (t > 70 fs), due to
wavepacket spatial broadening and also its dispatching over
additional degrees of freedom, the control efficiency is expected
to be lost, as a consequence of less important successive wave-
packet overlapping.
The interference mechanism can be extended and comple-

mented by a kick mechanism, in the spirit of the one already dis-
cussed previously in the context of molecular alignment or
orientation processes[45]. At this respect, we are considering a
train of N = 5 identical individual pulses in Eq. (22). The kick
mechanism assumes sudden excitation of the system. We are
therefore addressing even shorter duration T = 7 fs to 10 fs
pulses without the specific need for a resonance condition.
The molecule can be kicked every time when P1 starts
decreasing.
As has previously been stated, the control observable given by

Eq. (19) highly depends on the field intensity. In particular, it is
only for strong field regimes that it can take the values exceeding
0.5. In order to fix the intensity regimes for the present system
described within a 4D model, we proceed with dynamical calcu-
lations using both a single pulse or two (equal fluence) pulses
with a typical delay of 13 fs and for a series of increasing inten-
sities. Figure 5 plots the bright donor state population P2 at the
final time (t = 50 fs) as a function of the field leading intensity.
As is clear from the figure, for the single excitation, the weak field
regime extends up to intensities I = 1013 W=cm2, for which
P2 increases rather linearly. The strong field regime shows
non-linear behaviors: first, a saturation in S2 population, for
about I = 2 × 1013 W=cm2, followed by a decrease down to
I = 7 × 1013 W=cm2, corresponding to partial population
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trapping in the ground state S0, and then again an increase. We
checked that the limit between weak (linear behavior) and
strong fields (non-linear behaviors) remains practically
unchanged when applying two pulses of equal fluence with a
typical delay of τ = 13 fs, as will basically be the case for the fol-
lowing control issues.

4. Results and Discussion

We will successively examine the efficiency and robustness of
the interference and kick mechanisms as implemented in their
respective control strategies, when going from a reduced 4D to a
full 24Dmodel. The guiding principle is to define the parameters
of the control field in a 4D realistic and tractable model. This
field, once obtained, is later used in a full-dimensional dynamic
calculation including all 24 degrees of freedom. The challenge is
to discover the efficiency and robustness of such a control field
that persists when confronted with the presence of the other
numerous degrees of freedom of the molecule.

4.1. Interference mechanism

Having in mind the general post-pulse evolution of the excited
states populations as illustrated by Fig. 2, two possible interfer-
ence schemes could be envisioned. One concerns the nuclear
wavepacket early dynamics for times typically less than t <
70 fs within the first vibrational periods, the second correspond-
ing to longer times, typically t > 70 fs when the wavepacket
revisits the FC region, following the revival patterns that are
observed in Fig. 2. The asymptotic contrast, as defined by
Eq. (21), is calculated in a 4D model as a function of the delay
τ between the two pulses of fixed duration T = 14 fs. All calcu-
lations are conducted within the appropriate field amplitude
renormalization condition [cf. Eq. (24)] leading to the same flu-
ence as the one of the single pulse. The results are displayed in
Fig. 6. Following the analysis of Fig. 5, we consider three laser
intensities: two pertaining to the weak field regime I = 5 ×
1012 W=cm2 and I = 1013 W=cm2 and one to the strong field
regime I = 8.8 × 1013 W=cm2. Weak fields, apart from being

easier to realize experimentally, have the advantage of better
supporting the first-order perturbation approach of Eq. (28).
However, the rather low contrast obtained for I = 5 ×
1012 W=cm2 makes us favor the choice of I = 1013 W=cm2

for a typical illustration of the weak field regime. In this regime,
the optimal contrast p = 0.8 is obtained for a delay of τ = 25 fs,
which, as discussed before, denotes a rather good efficiency, tak-
ing into account that less than 20% of the initial state population
is transferred to the donor state S2, as seen from Fig. 5.
As a clear indication of the efficiency of the optimal control

strategy, we compare the two population transfer dynamics
resulting from either a single pulse or two pulses of equal fluence
with the optimal delay of τ = 25 fs (Fig. 7). The single pulse
depletes the ground state up to P0 = 0.65. The second pulse in
constructive interference, producing a depletion up to
P0 = 0.38. The contrast is increased by a factor 3.3 from p =
0.24 up to p = 0.8. The final population, which is deposited
on state S1, is P1 = 0.5, meaning that about 50% of the ground
state population is in the acceptor state, while only 16% remains
in the donor.

Fig. 5. Excited state population P2 as a function of the leading intensity. Red
dashed thin line for a single pulse, black thick solid line for two equal fluence
pulses, with a delay of τ = 13 fs.

Fig. 6. Asymptotic contrast (4D) as a function of the inter-pulse delay τ for
two pulses, each with a duration of T = 14 fs, equal fluence pulses of
leading intensity I. The weak field regime is illustrated by the intensities
I = 5 × 1012 W/cm2 in the blue dashed-dotted line, and by I = 1013 W/cm2 in
the red dashed line. I = 8.8 × 1013 W/cm2 corresponds to the strong field
regime, represented by the black solid curve.

Fig. 7. Excited states populations as a function of the propagation time for
two pulses of intensity I = 1013 W/cm2 delayed by τ = 25 fs. P0 is indicated in the
dashed-dotted black line, P1 in the thick red solid line, and P2 in the thin solid
black line.
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The strong field regime offers much better contrasts by
depleting more of the ground state population P0. The results
displayed in Fig. 6 show that the maximum is reached for a delay
of τ = 6 fs and leads to p = 1.55 as a contrast. Moreover, fast
oscillations as a function of the delay show the sensitivity of
the observable to this delay, which is another signature of inter-
ference effects. Four characteristic delays are considered in the
4D reduced model for an intensity I = 8.8 × 1013 W=cm2. The
single pulse (corresponding to τ = 0 fs, after equal fluence
renormalization) and τ = 9 fs (corresponding to a local mini-
mum in Fig. 6) result in comparable dynamics leading to small
asymptotic contrasts (typically p < 0.3). The third choice for the
delay τ = 6 fs corresponds to the optimal value reached during
the early dynamics p = 1.55, whereas the fourth choice τ = 75 fs
stands for the optimal value p = 0.9 obtained during the late
dynamics. In an a posteriori way, we also checked the sensitivity
and optimality with respect to the resonance condition. The first
rows of Table 2 for the interference scenario collect the asymp-
totic contrasts for two off-resonance conditions. The frequency
ω = 4.56 eV below the resonance is better fitted for a population
transfer towards state S1. But, as such transfers cannot operate in
a direct way, the efficiency in terms of contrast is not satisfactory.
The frequencyω = 5.15 eV above the resonance, although open-
ing the possibility for some interesting superposition of vibra-
tional levels mixing the two excited states, turns out to be less
efficient. This study validates the choice made for the resonance
frequency, as the presumably optimal one.
Finally, we introduce the optimal control parameter values

obtained from the reduced 4D dynamics into a full 24D model
describing population evolution. The results are displayed in
Fig. 8 for the early dynamics and Fig. 9 for the late dynamics.
It is worthwhile noting that such full-dimensional calculations
are done once the laser parameters are optimized within the con-
text of the reduced 4D model. As for the 24D calculations, they
necessitate a central processing unit (CPU) time of about 32 h

using the OpenMP parallelization scheme with 16 processors on
an Intel E5-2665 computer. Themost striking observation is that
the population evolution in the 24D full dynamics closely fol-
lows the one of the 4D calculations. Both end with very compa-
rable asymptotic contrast exceeding p ≃ 1.6 for τ = 6 fs and
p ≃ 0.9 for τ = 75 fs. Following this observation, late dynamics
control turns out to be less efficient. Actually, better interference
schemes are operating for early dynamics where the vibrational
wavepacket dynamics is more accurately periodic, with better
marked revival structures, better adapted for the interference
mechanism. The asymptotic contrasts obtained in the 24D
model are comparable with the ones of the reduced 4D model,
even very slightly better. This is presumably due to the fact that
the wavepacket is more efficiently and rapidly dispatching
towards the additional degrees of freedom, resulting in a faster
population stabilization between the excited states. As a conclu-
sion, the optimal result obtained for an early dynamics control
scheme gives an acceptor dark state population of about
P1 = 0.6, which means that 60% of the ground state initial pop-
ulation is transferred to the acceptor S1, while only 16% remains
on the donor S2.

Table 2. Contrasts for Several Excitation Frequencies for Both Mechanisms
Discussed in the Texta.

Mechanism ω (eV) p

Interference 4.56 0.3

I = 8.8 × 1013 W=cm2 4.77 1.6

τ = 6 fs 4.91 0.45

T = 14 fs 5.15 0.67

Kicks 4.56 0.58

I = 5 × 1012 W=cm2 4.77 1.71

τ = 13 fs 4.91 1.64

T = 10 fs 5.15 0.61

aω = 4.77 eV corresponds to the resonance.

Fig. 8. Excited states populations as a function of the propagation time for
two pulses of intensity I = 8.8 × 1013 W/cm2 delayed by τ = 6 fs from a full 24D
model. P0 is indicated in the dashed-dotted black line, P1 in the thick red solid
line, and P2 in the thin solid black line.

Fig. 9. Excited states populations as a function of the propagation time for
two pulses of intensity I = 8.8 × 1013 W/cm2 delayed by τ = 75 fs from a full 24D
model. P0 is indicated in the dashed-dotted black line, P1 in the thick red solid
line, and P2 in the thin solid black line.
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4.2. Kick mechanism

The kick mechanism operates with ultra-short (broad-band)
pulses, leading to successive sudden, non-resonant momentum
transfer to the molecule[45]. Figure 10 displays the asymptotic
contrast as a function of a constant single delay τ between the
kicks imparted to the system from a train of five identical pulses,
with fixed intensity I = 5 × 1012 W=cm2. Here, we deal with two
control parameters, namely, the pulse duration T and the delay
τ. It is important to note that a precise value for the excitation
frequency is not very relevant, since the broad-band character of
the individual pulses renders the strategy essentially non-
resonant. As with the previously discussed mechanism, once the
optimal pulse parameters are determined on the reduced more
tractable 4D model, they are transposed to the full 24D dynam-
ics. More precisely, we obtain from Fig. 10 an optimal asymp-
totic contrast p = 1.71, for individual pulse duration T = 10 fs
and delay τ = 13 fs. Here, also we checked the sensitivity of
the results with respect to the excitation frequency ω. The last
rows of Table 2, corresponding to the kick scenario, collect
the results for three off-resonant frequencies. As expected, the
contrast is not very sensitive to frequencies within a reasonable
window covering ω = 4.77 eV to ω = 4.91 eV, leading to almost
the same p = 1.7. It is only far from these values that the results
differ but with a less efficient control.
Figure 11 displays the corresponding time evolution of the

electronic states populations. As can be seen from the step-
by-step decreasing evolution of P0, at each kick, the momentum
imparted to the system induces an increasing population
towards the excited states. Our primary aim was to increase
regularly the population P1. Such a control could presumably
be possible with different delays between the kicks. But, for eas-
ier experimental requirements, we assume in this control
scheme a maximum of equally delayed, five identical pulses per-
taining to a weak field regime I = 5 × 1012 W=cm2. With such
restrictions, the population P1 is not regularly increasing, even
during the time when the kicks are applied. Another strategy
could be to apply kicks every time P1 starts to decrease, as
has been previously done in Ref. [45]. Targeting experimental
feasibility, within this restrictive parameters sampling space,

we get very encouraging results, with contrasts up to p = 1.75.
We also observe from the full-dimensional calculation of
Fig. 11 that 60% of the population of the ground state is trans-
ferred to the dark acceptor, while only 16% remains on the
donor. About 54 CPU hours are needed for this calculation with
the same computer as mentioned before. It is worthwhile noting
that short duration and low intensity five-pulse trains can do as
well, even better than the two interfering long duration (reso-
nant) intense pulses, as can be observed from Figs. 8 and 11.

5. Conclusion

In this work, we consider the intense laser control of funneling
dynamics between electronic states with decreasing energy gra-
dient and passing through a CI. The pyrazine molecule offers
such a framework involving two excited electronic states, pre-
senting a strong non-adiabatic coupling in relation with their
CI. Moreover, the initial ground state is radiatively coupled to
the highest energy excited state, which is considered as a bright
donor (D).We are concerned by the population transfer dynam-
ics from this state, to the lowest energy dark acceptor (A) state,
motivated by the possibility of long term deposit in (A), like in
light-harvesting systems. We propose some efficient and robust
external control schemes to achieve stable optimal final popula-
tion in (A). Facing an indirect population transfer process, our
control observable should incorporate both a maximum
depletion of the ground state and a maximum final population
in (A), when sharing between (D) and (A). This is done by defin-
ing an asymptotic contrast in terms of the ratio of the population
difference between (A) and (D) to the remaining ground state
population. In order to maximize this contrast, and inspired
by a thorough understanding of the 2D (CI branching space)
post-pulse field-free population evolution, we refer to two basic
coherent control mechanisms, namely, pump-pump interfer-
ence and kicks. The search for the optimal control parameters
for an electromagnetic field in terms of a train of ultra-short laser
pulses is conducted on a reduced but still realistic 4D model of
pyrazine. More precisely, we optimize the pulse leading

Fig. 10. Asymptotic contrast (4D) as a function of the inter-pulse delay τ for
five equal kicks at a fixed intensity I = 5× 1012 W/cm2. The thin black solid line is
for kicks duration T = 10 fs; the thick red solid line is for T = 7 fs.

Fig. 11. Excited states populations as a function of the propagation time for
five ultra-short T = 10 fs pulses of intensity I = 5 × 1012 W/cm2 delayed by τ =
13 fs for a full 24D model. P0 is indicated in the dashed-dotted black line, P1 in
the thick red solid line, and P2 in the thin solid black line.

Vol. 20, No. 10 | October 2022 Chinese Optics Letters

100007-10



frequency and intensity, duration, and the inter-pulse delay.
Once obtained and fixed, these parameters are used in the full
24D dynamics to calculate the time evolution of the electronic
states populations. It is very gratifying to see that this extension
of control mechanisms, often established for over simplified sys-
tems involving only a small number of levels, can survive and be
effective when applied to systems with a large number of degrees
of freedom. This is probably the most relevant message of
this study.
Having in mind the limitations of realistically achievable

experimental conditions, the excited states population contrasts
we obtained can be considered as efficient ones for pyrazine CI-
mediated funneling dynamics. Referring to either interference or
kick mechanisms, about 60% of the ground state population is
deposited in the acceptor state, while about 16% remains in the
donor state. As a perspective, we can mention other control
strategies that could be checked in terms of their possible exten-
sion to multi-dimensional systems. One is the strong field
pump-probe interference we already mentioned [cf. Eq. (27)];
the other being the frequency chirp. The density of levels for
the vibrational baths being important, addressing in an optimal
way some specific levels playing a major role in the funneling
dynamics control may deserve interest. Even more importantly,
pyrazine should be considered as an example of amodestly com-
plex system. As a conclusion and consequence of our findings,
we anticipate the possibility of potential transposition of such
control mechanisms to other larger biological systems. This
would certainly be conditioned by having a small number of
active normal modes among all the others, which are spectators
in the dynamics we wish to control. Then, similar to what we
have observed for pyrazine, external control fields once defined
and fixed in low-dimensional models should be effective at
higher dimensions.
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